Nuprl Definition : k-1-continuous

k-1-continuous{i:l}(k;T.F[T]) ==  ∀[X:ℕ ⟶ ℕk ⟶ Type]. ((∀n:ℕ(n 1) ⊆ n)  ((⋂n:ℕF[X n]) ⊆F[⋂n. n]))



Definitions occuring in Statement :  k-intersection: n. X[n] k-subtype: A ⊆ B int_seg: {i..j-} nat: subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a isect: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions occuring in definition :  uall: [x:A]. B[x] function: x:A ⟶ B[x] int_seg: {i..j-} universe: Type implies:  Q all: x:A. B[x] k-subtype: A ⊆ B add: m natural_number: $n subtype_rel: A ⊆B isect: x:A. B[x] nat: k-intersection: n. X[n] apply: a
FDL editor aliases :  k-1-continuous

Latex:
k-1-continuous\{i:l\}(k;T.F[T])  ==
    \mforall{}[X:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  Type].  ((\mforall{}n:\mBbbN{}.  X  (n  +  1)  \msubseteq{}  X  n)  {}\mRightarrow{}  ((\mcap{}n:\mBbbN{}.  F[X  n])  \msubseteq{}r  F[\mcap{}n.  X  n]))



Date html generated: 2018_05_21-PM-00_09_21
Last ObjectModification: 2017_10_18-PM-02_34_02

Theory : co-recursion


Home Index