Nuprl Lemma : k-ext_wf
∀[k:ℕ]. ∀[A,B:ℕk ⟶ Type]. (A ≡ B ∈ ℙ)
Proof
Definitions occuring in Statement :
k-ext: A ≡ B
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
k-ext: A ≡ B
,
prop: ℙ
,
and: P ∧ Q
,
nat: ℕ
Lemmas referenced :
k-subtype_wf,
int_seg_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
productEquality,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
functionExtensionality,
applyEquality,
natural_numberEquality,
setElimination,
rename,
because_Cache,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
cumulativity,
universeEquality,
isect_memberEquality
Latex:
\mforall{}[k:\mBbbN{}]. \mforall{}[A,B:\mBbbN{}k {}\mrightarrow{} Type]. (A \mequiv{} B \mmember{} \mBbbP{})
Date html generated:
2018_05_21-PM-00_08_59
Last ObjectModification:
2017_10_18-PM-02_31_50
Theory : co-recursion
Home
Index