Nuprl Lemma : length-copath-cons
∀[b:Top]. ∀[p:Top × Top].  (copath-length(copath-cons(b;p)) ~ copath-length(p) + 1)
Proof
Definitions occuring in Statement : 
copath-cons: copath-cons(b;x)
, 
copath-length: copath-length(p)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
product: x:A × B[x]
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
copath-length: copath-length(p)
, 
pi1: fst(t)
, 
copath-cons: copath-cons(b;x)
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
productElimination, 
thin, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[b:Top].  \mforall{}[p:Top  \mtimes{}  Top].    (copath-length(copath-cons(b;p))  \msim{}  copath-length(p)  +  1)
Date html generated:
2018_07_25-PM-01_40_24
Last ObjectModification:
2018_06_01-AM-10_19_14
Theory : co-recursion
Home
Index