Nuprl Lemma : param-co-W_wf

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P].  (pco-W ∈ P ⟶ Type)


Proof




Definitions occuring in Statement :  param-co-W: pco-W uall: [x:A]. B[x] so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T param-co-W: pco-W so_apply: x[s] so_apply: x[s1;s2] so_apply: x[s1;s2;s3]
Lemmas referenced :  corec-family_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality productEquality applyEquality functionEquality cumulativity universeEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
    (pco-W  \mmember{}  P  {}\mrightarrow{}  Type)



Date html generated: 2016_05_14-AM-06_12_27
Last ObjectModification: 2015_12_26-PM-00_06_05

Theory : co-recursion


Home Index