Nuprl Lemma : s_hd_cons_lemma
∀b,a:Top.  (s-hd(a.b) ~ a)
Proof
Definitions occuring in Statement : 
s-cons: x.s
, 
s-hd: s-hd(s)
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
s-cons: x.s
, 
s-hd: s-hd(s)
, 
pi1: fst(t)
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}b,a:Top.    (s-hd(a.b)  \msim{}  a)
Date html generated:
2016_05_14-AM-06_22_31
Last ObjectModification:
2015_12_26-AM-11_59_23
Theory : co-recursion
Home
Index