Nuprl Lemma : sg-init-change-init
∀[g:SimpleGame]. ∀[j:Top].  (InitialPos(g@j) ~ j)
Proof
Definitions occuring in Statement : 
sg-change-init: g@j
, 
sg-init: InitialPos(g)
, 
simple-game: SimpleGame
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
pi1: fst(t)
, 
pi2: snd(t)
, 
spreadn: spread4, 
sg-init: InitialPos(g)
, 
sg-change-init: g@j
, 
simple-game: SimpleGame
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
simple-game_wf, 
top_wf
Rules used in proof : 
hypothesis, 
extract_by_obid, 
cut, 
sqequalAxiom, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:SimpleGame].  \mforall{}[j:Top].    (InitialPos(g@j)  \msim{}  j)
Date html generated:
2018_07_25-PM-01_35_32
Last ObjectModification:
2018_06_20-PM-03_52_22
Theory : co-recursion
Home
Index