Nuprl Lemma : sg-legal1-change-init
∀[g:SimpleGame]. ∀[x,y,j:Top].  (Legal1(x;y) ~ Legal1(x;y))
Proof
Definitions occuring in Statement : 
sg-change-init: g@j, 
sg-legal1: Legal1(x;y), 
simple-game: SimpleGame, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
pi1: fst(t), 
pi2: snd(t), 
spreadn: spread4, 
sg-change-init: g@j, 
sg-legal1: Legal1(x;y), 
simple-game: SimpleGame, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
simple-game_wf, 
top_wf
Rules used in proof : 
hypothesis, 
extract_by_obid, 
cut, 
because_Cache, 
sqequalAxiom, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:SimpleGame].  \mforall{}[x,y,j:Top].    (Legal1(x;y)  \msim{}  Legal1(x;y))
 Date html generated: 
2018_07_25-PM-01_35_17
 Last ObjectModification: 
2018_06_20-PM-03_49_03
Theory : co-recursion
Home
Index