Nuprl Lemma : win2_wf

[g:SimpleGame]. (win2(g) ∈ ℙ)


Proof




Definitions occuring in Statement :  win2: win2(g) simple-game: SimpleGame uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T win2: win2(g) so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  uall_wf nat_wf win2strat_wf simple-game_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:SimpleGame].  (win2(g)  \mmember{}  \mBbbP{})



Date html generated: 2018_07_25-PM-01_33_39
Last ObjectModification: 2018_06_11-PM-04_12_26

Theory : co-recursion


Home Index