Nuprl Lemma : win2_wf
∀[g:SimpleGame]. (win2(g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
win2: win2(g)
, 
simple-game: SimpleGame
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
win2: win2(g)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
uall_wf, 
nat_wf, 
win2strat_wf, 
simple-game_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:SimpleGame].  (win2(g)  \mmember{}  \mBbbP{})
Date html generated:
2018_07_25-PM-01_33_39
Last ObjectModification:
2018_06_11-PM-04_12_26
Theory : co-recursion
Home
Index