Nuprl Lemma : lifting-add-isaxiom-2
∀[a:ℤ]. ∀[b,c,d:Top].  (a + if b = Ax then c otherwise d ~ if b = Ax then a + c otherwise a + d)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
top: Top, 
isaxiom: if z = Ax then a otherwise b, 
add: n + m, 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top
Lemmas referenced : 
add-commutes, 
lifting-add-isaxiom-1, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalAxiom, 
intEquality
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b,c,d:Top].    (a  +  if  b  =  Ax  then  c  otherwise  d  \msim{}  if  b  =  Ax  then  a  +  c  otherwise  a  +  d)
 Date html generated: 
2016_05_13-PM-03_43_17
 Last ObjectModification: 
2015_12_26-AM-09_52_30
Theory : computation
Home
Index