Nuprl Definition : strong-continuity4

strong-continuity4(T;F) ==
  ∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕn?)
   ∀f:ℕ ⟶ T. ∃n:ℕ(((M f) (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl (F f)) ∈ (ℕ?)))))



Definitions occuring in Statement :  int_seg: {i..j-} nat: assert: b isl: isl(x) all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions occuring in definition :  apply: a inl: inl x unit: Unit nat: union: left right equal: t ∈ T isl: isl(x) assert: b implies:  Q all: x:A. B[x] and: P ∧ Q exists: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int_seg: {i..j-}
FDL editor aliases :  strong-continuity4

Latex:
strong-continuity4(T;F)  ==
    \mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}n?)
      \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  \mexists{}n:\mBbbN{}.  (((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  (F  f))))))



Date html generated: 2017_09_29-PM-06_05_20
Last ObjectModification: 2017_09_03-PM-10_12_11

Theory : continuity


Home Index