Nuprl Lemma : weak-continuity-principle-nat+-int-bool-double-ext

F,H:(ℕ+ ⟶ ℤ) ⟶ 𝔹. ∀f:ℕ+ ⟶ ℤ. ∀G:n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤg ∈ (ℕ+n ⟶ ℤ)} .  ∃n:ℕ+(F (G n) ∧ (G n))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  weak-continuity-principle-nat+-int-bool-double member: t ∈ T
Lemmas referenced :  weak-continuity-principle-nat+-int-bool-double
Rules used in proof :  equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}F,H:(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  f  =  g\}  .
    \mexists{}n:\mBbbN{}\msupplus{}.  (F  f  =  F  (G  n)  \mwedge{}  H  f  =  H  (G  n))



Date html generated: 2017_09_29-PM-06_06_21
Last ObjectModification: 2017_09_12-PM-02_10_28

Theory : continuity


Home Index