Nuprl Lemma : weak-continuity-principle-nat+-int-bool-ext
∀F:(ℕ+ ⟶ ℤ) ⟶ 𝔹. ∀f:ℕ+ ⟶ ℤ. ∀G:n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤ| f = g ∈ (ℕ+n ⟶ ℤ)} .  ∃n:ℕ+. F f = F (G n)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
weak-continuity-principle-nat+-int-bool
Lemmas referenced : 
weak-continuity-principle-nat+-int-bool
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}F:(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  f  =  g\}  .    \mexists{}n:\mBbbN{}\msupplus{}.  F  f  =  F  (G  n)
Date html generated:
2017_09_29-PM-06_06_13
Last ObjectModification:
2017_07_08-PM-00_16_07
Theory : continuity
Home
Index