Nuprl Lemma : decidable_functionality
∀[P,Q:ℙ].  ((P ⇐⇒ Q) ⇒ (Dec(P) ⇐⇒ Dec(Q)))
Proof
Definitions occuring in Statement : 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
decidable_wf, 
iff_wf, 
iff_preserves_decidability
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
Error :universeIsType, 
universeEquality, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}[P,Q:\mBbbP{}].    ((P  \mLeftarrow{}{}\mRightarrow{}  Q)  {}\mRightarrow{}  (Dec(P)  \mLeftarrow{}{}\mRightarrow{}  Dec(Q)))
Date html generated:
2019_06_20-AM-11_16_57
Last ObjectModification:
2018_09_26-AM-10_24_31
Theory : core_2
Home
Index