Nuprl Lemma : equal-wf
∀[X,Y,A:Type].  (respects-equality(Y;A) 
⇒ respects-equality(X;A) 
⇒ (∀[a:X]. ∀[b:Y].  (a = b ∈ A ∈ ℙ)))
Proof
Definitions occuring in Statement : 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
member: t ∈ T
, 
label: ...$L... t
, 
guard: {T}
, 
respects-equality: respects-equality(S;T)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
respects-equality_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
because_Cache, 
Error :inhabitedIsType, 
universeEquality, 
equalityEquality, 
dependent_functionElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[X,Y,A:Type].    (respects-equality(Y;A)  {}\mRightarrow{}  respects-equality(X;A)  {}\mRightarrow{}  (\mforall{}[a:X].  \mforall{}[b:Y].    (a  =  b  \mmember{}  \mBbbP{})))
Date html generated:
2019_06_20-AM-11_13_47
Last ObjectModification:
2018_11_25-PM-06_16_49
Theory : core_2
Home
Index