Nuprl Lemma : equal-wf

[X,Y,A:Type].  (respects-equality(Y;A)  respects-equality(X;A)  (∀[a:X]. ∀[b:Y].  (a b ∈ A ∈ ℙ)))


Proof




Definitions occuring in Statement :  respects-equality: respects-equality(S;T) uall: [x:A]. B[x] prop: implies:  Q member: t ∈ T universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q prop: member: t ∈ T label: ...$L... t guard: {T} respects-equality: respects-equality(S;T) all: x:A. B[x]
Lemmas referenced :  respects-equality_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  Error :universeIsType,  hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache Error :inhabitedIsType,  universeEquality equalityEquality dependent_functionElimination independent_functionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X,Y,A:Type].    (respects-equality(Y;A)  {}\mRightarrow{}  respects-equality(X;A)  {}\mRightarrow{}  (\mforall{}[a:X].  \mforall{}[b:Y].    (a  =  b  \mmember{}  \mBbbP{})))



Date html generated: 2019_06_20-AM-11_13_47
Last ObjectModification: 2018_11_25-PM-06_16_49

Theory : core_2


Home Index