Nuprl Lemma : isect_wf

[A:Type]. ∀[B:A ⟶ ℙ].  (⋂x:A. B[x] ∈ ℙ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  uall_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  \mBbbP{}].    (\mcap{}x:A.  B[x]  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_06_32
Last ObjectModification: 2016_01_06-PM-05_29_06

Theory : core_2


Home Index