Nuprl Lemma : kcomb_wf
∀[A,B:Type]. (K ∈ A ⟶ B ⟶ A)
Proof
Definitions occuring in Statement :
kcomb: K
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
kcomb: K
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
lambdaEquality,
hypothesisEquality,
sqequalHypSubstitution,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
Error :inhabitedIsType,
isect_memberEquality,
isectElimination,
thin,
universeEquality,
Error :universeIsType
Latex:
\mforall{}[A,B:Type]. (K \mmember{} A {}\mrightarrow{} B {}\mrightarrow{} A)
Date html generated:
2019_06_20-AM-11_14_39
Last ObjectModification:
2018_09_26-AM-10_42_01
Theory : core_2
Home
Index