Nuprl Lemma : less_than'_wf
∀[a,b:ℤ].  (less_than'(a;b) ∈ ℙ)
Proof
Definitions occuring in Statement : 
less_than': less_than'(a;b)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
less_than': less_than'(a;b)
, 
top: Top
Lemmas referenced : 
top_wf, 
true_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesisEquality, 
lessCases, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
axiomSqEquality, 
extract_by_obid, 
isect_memberEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
axiomEquality, 
intEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].    (less\_than'(a;b)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-AM-11_18_48
Last ObjectModification:
2018_08_20-PM-09_28_11
Theory : core_2
Home
Index