Nuprl Lemma : let_wf
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[x:A].  (let v = x in f[v] ∈ B)
Proof
Definitions occuring in Statement : 
let: let, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
let: let, 
so_apply: x[s]
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[x:A].    (let  v  =  x  in  f[v]  \mmember{}  B)
Date html generated:
2016_05_13-PM-03_14_48
Last ObjectModification:
2016_01_06-PM-05_22_05
Theory : core_2
Home
Index