Nuprl Lemma : let_wf

[A,B:Type]. ∀[f:A ⟶ B]. ∀[x:A].  (let in f[v] ∈ B)


Proof




Definitions occuring in Statement :  let: let uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T let: let so_apply: x[s]
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality hypothesisEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality isectElimination thin because_Cache functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[x:A].    (let  v  =  x  in  f[v]  \mmember{}  B)



Date html generated: 2016_05_13-PM-03_14_48
Last ObjectModification: 2016_01_06-PM-05_22_05

Theory : core_2


Home Index