Nuprl Lemma : pi2_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[p:a:A × B[a]].  (snd(p) ∈ B[fst(p)])
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
so_apply: x[s]
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
productElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
applyEquality, 
isect_memberEquality, 
isectElimination, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[p:a:A  \mtimes{}  B[a]].    (snd(p)  \mmember{}  B[fst(p)])
Date html generated:
2016_05_13-PM-03_08_26
Last ObjectModification:
2016_01_06-PM-05_27_35
Theory : core_2
Home
Index