Nuprl Lemma : respects-equality-function

[A,A':Type]. ∀[B:A ⟶ Type]. ∀[B':A' ⟶ Type].
  ((A' ⊆A)  (∀a:A'. respects-equality(B[a];B'[a]))  respects-equality(a:A ⟶ B[a];a:A' ⟶ B'[a]))


Proof




Definitions occuring in Statement :  subtype_rel: A ⊆B respects-equality: respects-equality(S;T) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q respects-equality: respects-equality(S;T) all: x:A. B[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  istype-base respects-equality_wf subtype_rel_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  functionExtensionality hypothesisEquality sqequalRule Error :equalityIstype,  Error :functionIsType,  because_Cache Error :universeIsType,  applyEquality sqequalBase equalitySymmetry hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin Error :lambdaEquality_alt,  dependent_functionElimination axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  instantiate universeEquality pointwiseFunctionalityForEquality equalityTransitivity baseApply closedConclusion baseClosed independent_functionElimination applyLambdaEquality

Latex:
\mforall{}[A,A':Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[B':A'  {}\mrightarrow{}  Type].
    ((A'  \msubseteq{}r  A)
    {}\mRightarrow{}  (\mforall{}a:A'.  respects-equality(B[a];B'[a]))
    {}\mRightarrow{}  respects-equality(a:A  {}\mrightarrow{}  B[a];a:A'  {}\mrightarrow{}  B'[a]))



Date html generated: 2019_06_20-AM-11_13_58
Last ObjectModification: 2018_11_26-AM-00_17_25

Theory : core_2


Home Index