Nuprl Lemma : respects-equality-function
∀[A,A':Type]. ∀[B:A ⟶ Type]. ∀[B':A' ⟶ Type].
  ((A' ⊆r A) 
⇒ (∀a:A'. respects-equality(B[a];B'[a])) 
⇒ respects-equality(a:A ⟶ B[a];a:A' ⟶ B'[a]))
Proof
Definitions occuring in Statement : 
subtype_rel: A ⊆r B
, 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
respects-equality: respects-equality(S;T)
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
istype-base, 
respects-equality_wf, 
subtype_rel_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
functionExtensionality, 
hypothesisEquality, 
sqequalRule, 
Error :equalityIstype, 
Error :functionIsType, 
because_Cache, 
Error :universeIsType, 
applyEquality, 
sqequalBase, 
equalitySymmetry, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
instantiate, 
universeEquality, 
pointwiseFunctionalityForEquality, 
equalityTransitivity, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_functionElimination, 
applyLambdaEquality
Latex:
\mforall{}[A,A':Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[B':A'  {}\mrightarrow{}  Type].
    ((A'  \msubseteq{}r  A)
    {}\mRightarrow{}  (\mforall{}a:A'.  respects-equality(B[a];B'[a]))
    {}\mRightarrow{}  respects-equality(a:A  {}\mrightarrow{}  B[a];a:A'  {}\mrightarrow{}  B'[a]))
Date html generated:
2019_06_20-AM-11_13_58
Last ObjectModification:
2018_11_26-AM-00_17_25
Theory : core_2
Home
Index