Nuprl Lemma : sq_stable__and

[P:ℙ]. ∀[Q:⋂p:P. ℙ].  (SqStable(P)  (P  SqStable(Q))  SqStable(P ∧ Q))


Proof




Definitions occuring in Statement :  sq_stable: SqStable(P) uall: [x:A]. B[x] prop: implies:  Q and: P ∧ Q isect: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q sq_stable: SqStable(P) member: t ∈ T prop: and: P ∧ Q subtype_rel: A ⊆B squash: T cand: c∧ B
Lemmas referenced :  sq_stable_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality cumulativity hypothesisEquality hypothesis rename sqequalRule equalityTransitivity equalitySymmetry functionEquality applyEquality lambdaEquality isectEquality universeEquality independent_functionElimination imageElimination introduction productElimination imageMemberEquality baseClosed independent_pairFormation

Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}[Q:\mcap{}p:P.  \mBbbP{}].    (SqStable(P)  {}\mRightarrow{}  (P  {}\mRightarrow{}  SqStable(Q))  {}\mRightarrow{}  SqStable(P  \mwedge{}  Q))



Date html generated: 2016_05_13-PM-03_09_40
Last ObjectModification: 2016_01_06-PM-05_49_10

Theory : core_2


Home Index