Nuprl Lemma : sq_stable__and
∀[P:ℙ]. ∀[Q:⋂p:P. ℙ].  (SqStable(P) 
⇒ (P 
⇒ SqStable(Q)) 
⇒ SqStable(P ∧ Q))
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
isect: ⋂x:A. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
member: t ∈ T
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
cand: A c∧ B
Lemmas referenced : 
sq_stable_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
rename, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
applyEquality, 
lambdaEquality, 
isectEquality, 
universeEquality, 
independent_functionElimination, 
imageElimination, 
introduction, 
productElimination, 
imageMemberEquality, 
baseClosed, 
independent_pairFormation
Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}[Q:\mcap{}p:P.  \mBbbP{}].    (SqStable(P)  {}\mRightarrow{}  (P  {}\mRightarrow{}  SqStable(Q))  {}\mRightarrow{}  SqStable(P  \mwedge{}  Q))
Date html generated:
2016_05_13-PM-03_09_40
Last ObjectModification:
2016_01_06-PM-05_49_10
Theory : core_2
Home
Index