Nuprl Lemma : squash_functionality_wrt_iff
∀[P,Q:ℙ].  ({P ⇐⇒ Q} ⇒ {↓P ⇐⇒ ↓Q})
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
iff: P ⇐⇒ Q, 
squash: ↓T, 
implies: P ⇒ Q
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
and: P ∧ Q, 
guard: {T}, 
squash: ↓T
Lemmas referenced : 
iff_wf, 
squash_wf, 
squash_functionality_wrt_implies
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
Error :inhabitedIsType, 
because_Cache, 
universeEquality, 
Error :universeIsType, 
lambdaFormation, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
Error :isect_memberFormation_alt, 
independent_pairFormation, 
lambdaEquality, 
dependent_functionElimination, 
independent_pairEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    (\{P  \mLeftarrow{}{}\mRightarrow{}  Q\}  {}\mRightarrow{}  \{\mdownarrow{}P  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}Q\})
Date html generated:
2019_06_20-AM-11_17_40
Last ObjectModification:
2018_09_26-AM-10_25_00
Theory : core_2
Home
Index