Nuprl Lemma : subtract_wf
∀[x,y:ℤ]. (x - y ∈ ℤ)
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtract: n - m
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtract: n - m
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
hypothesis,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
intEquality,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
because_Cache,
addEquality,
minusEquality
Latex:
\mforall{}[x,y:\mBbbZ{}]. (x - y \mmember{} \mBbbZ{})
Date html generated:
2016_05_13-PM-03_07_06
Last ObjectModification:
2016_01_06-PM-05_28_37
Theory : core_2
Home
Index