Nuprl Lemma : tunion_wf

[A:Type]. ∀[B:A ⟶ Type].  (⋃x:A.B[x] ∈ Type)


Proof




Definitions occuring in Statement :  tunion: x:A.B[x] uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tunion: x:A.B[x] so_apply: x[s]
Lemmas referenced :  image-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality applyEquality baseClosed hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (\mcup{}x:A.B[x]  \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_06_35
Last ObjectModification: 2016_01_06-PM-05_29_05

Theory : core_2


Home Index