Nuprl Lemma : tunion_wf
∀[A:Type]. ∀[B:A ⟶ Type].  (⋃x:A.B[x] ∈ Type)
Proof
Definitions occuring in Statement : 
tunion: ⋃x:A.B[x]
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
tunion: ⋃x:A.B[x]
, 
so_apply: x[s]
Lemmas referenced : 
image-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
applyEquality, 
baseClosed, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (\mcup{}x:A.B[x]  \mmember{}  Type)
Date html generated:
2016_05_13-PM-03_06_35
Last ObjectModification:
2016_01_06-PM-05_29_05
Theory : core_2
Home
Index