Nuprl Lemma : dstype_wf
∀[TypeNames:Type]. ∀[d:DS(TypeNames)]. ∀[a:TypeNames].  (dstype(TypeNames; d; a) ∈ Type)
Proof
Definitions occuring in Statement : 
dstype: dstype(TypeNames; d; a)
, 
discrete_struct: DS(A)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
dstype: dstype(TypeNames; d; a)
, 
discrete_struct: DS(A)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
pi1_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
lambdaEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
productEquality
Latex:
\mforall{}[TypeNames:Type].  \mforall{}[d:DS(TypeNames)].  \mforall{}[a:TypeNames].    (dstype(TypeNames;  d;  a)  \mmember{}  Type)
Date html generated:
2016_05_14-PM-03_24_14
Last ObjectModification:
2015_12_26-PM-06_21_35
Theory : decidable!equality
Home
Index