Nuprl Lemma : dstype_wf

[TypeNames:Type]. ∀[d:DS(TypeNames)]. ∀[a:TypeNames].  (dstype(TypeNames; d; a) ∈ Type)


Proof




Definitions occuring in Statement :  dstype: dstype(TypeNames; d; a) discrete_struct: DS(A) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  dstype: dstype(TypeNames; d; a) discrete_struct: DS(A) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  pi1_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut applyEquality thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity hypothesisEquality universeEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache productEquality

Latex:
\mforall{}[TypeNames:Type].  \mforall{}[d:DS(TypeNames)].  \mforall{}[a:TypeNames].    (dstype(TypeNames;  d;  a)  \mmember{}  Type)



Date html generated: 2016_05_14-PM-03_24_14
Last ObjectModification: 2015_12_26-PM-06_21_35

Theory : decidable!equality


Home Index