Nuprl Lemma : id-graph_wf
∀[S:Id List]. (Graph(S) ∈ Type)
Proof
Definitions occuring in Statement : 
id-graph: Graph(S)
, 
Id: Id
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
id-graph: Graph(S)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
Id_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
functionEquality, 
setEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[S:Id  List].  (Graph(S)  \mmember{}  Type)
Date html generated:
2016_05_14-PM-03_37_38
Last ObjectModification:
2015_12_26-PM-05_59_00
Theory : decidable!equality
Home
Index