Nuprl Lemma : id-graph_wf

[S:Id List]. (Graph(S) ∈ Type)


Proof




Definitions occuring in Statement :  id-graph: Graph(S) Id: Id list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  id-graph: Graph(S) uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  Id_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut functionEquality setEquality lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[S:Id  List].  (Graph(S)  \mmember{}  Type)



Date html generated: 2016_05_14-PM-03_37_38
Last ObjectModification: 2015_12_26-PM-05_59_00

Theory : decidable!equality


Home Index