Nuprl Lemma : l_eqset_wf
∀[T:Type]. ∀[L1,L2:T List]. (l_eqset(T;L1;L2) ∈ ℙ)
Proof
Definitions occuring in Statement :
l_eqset: l_eqset(T;L1;L2)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
l_eqset: l_eqset(T;L1;L2)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
all_wf,
iff_wf,
l_member_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[L1,L2:T List]. (l\_eqset(T;L1;L2) \mmember{} \mBbbP{})
Date html generated:
2016_05_14-PM-03_29_24
Last ObjectModification:
2015_12_26-PM-06_24_39
Theory : decidable!equality
Home
Index