Nuprl Lemma : member-list-diff

[T:Type]. ∀eq:EqDecider(T). ∀as,bs:T List. ∀x:T.  ((x ∈ as-bs) ⇐⇒ (x ∈ as) ∧ (x ∈ bs)))


Proof




Definitions occuring in Statement :  list-diff: as-bs l_member: (x ∈ l) list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q
Lemmas referenced :  list-diff-property list_wf deq_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination productElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}as,bs:T  List.  \mforall{}x:T.    ((x  \mmember{}  as-bs)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  as)  \mwedge{}  (\mneg{}(x  \mmember{}  bs)))



Date html generated: 2016_05_14-PM-03_29_52
Last ObjectModification: 2015_12_26-PM-06_02_51

Theory : decidable!equality


Home Index