Nuprl Lemma : member-list-diff
∀[T:Type]. ∀eq:EqDecider(T). ∀as,bs:T List. ∀x:T.  ((x ∈ as-bs) 
⇐⇒ (x ∈ as) ∧ (¬(x ∈ bs)))
Proof
Definitions occuring in Statement : 
list-diff: as-bs
, 
l_member: (x ∈ l)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
Lemmas referenced : 
list-diff-property, 
list_wf, 
deq_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
productElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}as,bs:T  List.  \mforall{}x:T.    ((x  \mmember{}  as-bs)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  as)  \mwedge{}  (\mneg{}(x  \mmember{}  bs)))
Date html generated:
2016_05_14-PM-03_29_52
Last ObjectModification:
2015_12_26-PM-06_02_51
Theory : decidable!equality
Home
Index