Nuprl Lemma : name_eq-normalize3
∀[F,G,X,a,b:Top].
  (case name_eq(a;b) ∧b X of inl(x) => F[a] | inr(y) => G ~ case name_eq(a;b) ∧b X of inl(x) => F[b] | inr(y) => G)
Proof
Definitions occuring in Statement : 
name_eq: name_eq(x;y)
, 
band: p ∧b q
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
name_eq-normalize2, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality
Latex:
\mforall{}[F,G,X,a,b:Top].
    (case  name\_eq(a;b)  \mwedge{}\msubb{}  X  of  inl(x)  =>  F[a]  |  inr(y)  =>  G  \msim{}  case  name\_eq(a;b)  \mwedge{}\msubb{}  X
      of  inl(x)  =>
      F[b]
      |  inr(y)  =>
      G)
Date html generated:
2016_05_14-PM-03_34_52
Last ObjectModification:
2015_12_26-PM-05_59_50
Theory : decidable!equality
Home
Index