Nuprl Lemma : remove_repeats_cons_lemma
∀v,u,eq:Top.  (remove-repeats(eq;[u / v]) ~ [u / filter(λx.(¬b(eq x u));remove-repeats(eq;v))])
Proof
Definitions occuring in Statement : 
remove-repeats: remove-repeats(eq;L)
, 
filter: filter(P;l)
, 
cons: [a / b]
, 
bnot: ¬bb
, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
remove-repeats: remove-repeats(eq;L)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
top_wf, 
list_ind_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}v,u,eq:Top.    (remove-repeats(eq;[u  /  v])  \msim{}  [u  /  filter(\mlambda{}x.(\mneg{}\msubb{}(eq  x  u));remove-repeats(eq;v))])
Date html generated:
2016_05_14-PM-03_26_34
Last ObjectModification:
2015_12_26-PM-06_23_07
Theory : decidable!equality
Home
Index