Nuprl Lemma : remove_repeats_cons_lemma

v,u,eq:Top.  (remove-repeats(eq;[u v]) [u filter(λx.(¬b(eq u));remove-repeats(eq;v))])


Proof




Definitions occuring in Statement :  remove-repeats: remove-repeats(eq;L) filter: filter(P;l) cons: [a b] bnot: ¬bb top: Top all: x:A. B[x] apply: a lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T remove-repeats: remove-repeats(eq;L) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}v,u,eq:Top.    (remove-repeats(eq;[u  /  v])  \msim{}  [u  /  filter(\mlambda{}x.(\mneg{}\msubb{}(eq  x  u));remove-repeats(eq;v))])



Date html generated: 2016_05_14-PM-03_26_34
Last ObjectModification: 2015_12_26-PM-06_23_07

Theory : decidable!equality


Home Index