Nuprl Lemma : str-to-nat_wf
∀[s:Atom List]. (str-to-nat(s) ∈ ℕ)
Proof
Definitions occuring in Statement : 
str-to-nat: str-to-nat(s)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
atom: Atom
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
str-to-nat: str-to-nat(s)
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
str-to-nat-plus_wf, 
false_wf, 
le_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
atomEquality
Latex:
\mforall{}[s:Atom  List].  (str-to-nat(s)  \mmember{}  \mBbbN{})
Date html generated:
2016_05_14-PM-03_35_43
Last ObjectModification:
2015_12_26-PM-05_59_31
Theory : decidable!equality
Home
Index