Nuprl Lemma : vec_wf
∀[T:Type]. ∀[n:ℕ].  (vec(T;n) ∈ Type)
Proof
Definitions occuring in Statement : 
vec: vec(T;n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
vec: vec(T;n)
, 
nat: ℕ
, 
prop: ℙ
Lemmas referenced : 
list_wf, 
equal_wf, 
length_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
intEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].    (vec(T;n)  \mmember{}  Type)
Date html generated:
2017_04_17-AM-09_15_33
Last ObjectModification:
2017_02_27-PM-05_21_02
Theory : decidable!equality
Home
Index