Nuprl Lemma : vec_wf

[T:Type]. ∀[n:ℕ].  (vec(T;n) ∈ Type)


Proof




Definitions occuring in Statement :  vec: vec(T;n) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T vec: vec(T;n) nat: prop:
Lemmas referenced :  list_wf equal_wf length_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis intEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].    (vec(T;n)  \mmember{}  Type)



Date html generated: 2017_04_17-AM-09_15_33
Last ObjectModification: 2017_02_27-PM-05_21_02

Theory : decidable!equality


Home Index