Nuprl Lemma : vnil_wf

[T:Type]. (vnil() ∈ vec(T;0))


Proof




Definitions occuring in Statement :  vnil: vnil() vec: vec(T;n) uall: [x:A]. B[x] member: t ∈ T natural_number: $n universe: Type
Definitions unfolded in proof :  vec: vec(T;n) uall: [x:A]. B[x] member: t ∈ T vnil: vnil() prop:
Lemmas referenced :  length_of_nil_lemma nil_wf equal-wf-T-base length_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid hypothesis natural_numberEquality dependent_set_memberEquality sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality intEquality baseClosed axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (vnil()  \mmember{}  vec(T;0))



Date html generated: 2017_04_17-AM-09_15_36
Last ObjectModification: 2017_02_27-PM-05_21_05

Theory : decidable!equality


Home Index