Nuprl Lemma : vnil_wf
∀[T:Type]. (vnil() ∈ vec(T;0))
Proof
Definitions occuring in Statement : 
vnil: vnil()
, 
vec: vec(T;n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
vec: vec(T;n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
vnil: vnil()
, 
prop: ℙ
Lemmas referenced : 
length_of_nil_lemma, 
nil_wf, 
equal-wf-T-base, 
length_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
hypothesis, 
natural_numberEquality, 
dependent_set_memberEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
intEquality, 
baseClosed, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (vnil()  \mmember{}  vec(T;0))
Date html generated:
2017_04_17-AM-09_15_36
Last ObjectModification:
2017_02_27-PM-05_21_05
Theory : decidable!equality
Home
Index