Nuprl Lemma : dep-isect-assoc

A:Type. ∀B:A ⟶ Type. ∀C:a:A ⟶ B[a] ⟶ Type.  a:A ⋂ b:B[a] ⋂ C[a;b] ≡ z:a:A ⋂ B[a] ⋂ C[z;z]


Proof




Definitions occuring in Statement :  dep-isect: x:A ⋂ B[x] ext-eq: A ≡ B so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] so_apply: x[s1;s2] so_lambda: λ2x.t[x] guard: {T}
Lemmas referenced :  istype-universe dep-isect-subtype dep-isect_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  independent_pairFormation Error :lambdaEquality_alt,  Error :functionIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :universeIsType,  applyEquality Error :inhabitedIsType,  universeEquality equalitySymmetry equalityTransitivity dependentIntersectionEqElimination dependentIntersection_memberEquality dependentIntersectionElimination Error :depIsectIsType,  lambdaEquality sqequalRule dependent_functionElimination cumulativity

Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}C:a:A  {}\mrightarrow{}  B[a]  {}\mrightarrow{}  Type.    a:A  \mcap{}  b:B[a]  \mcap{}  C[a;b]  \mequiv{}  z:a:A  \mcap{}  B[a]  \mcap{}  C[z;z]



Date html generated: 2019_06_20-PM-00_35_03
Last ObjectModification: 2018_10_08-PM-05_28_39

Theory : dependent!intersection


Home Index