Nuprl Lemma : dep-isect-assoc
∀A:Type. ∀B:A ⟶ Type. ∀C:a:A ⟶ B[a] ⟶ Type.  a:A ⋂ b:B[a] ⋂ C[a;b] ≡ z:a:A ⋂ B[a] ⋂ C[z;z]
Proof
Definitions occuring in Statement : 
dep-isect: x:A ⋂ B[x]
, 
ext-eq: A ≡ B
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
Lemmas referenced : 
istype-universe, 
dep-isect-subtype, 
dep-isect_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
Error :lambdaEquality_alt, 
Error :functionIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :universeIsType, 
applyEquality, 
Error :inhabitedIsType, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependentIntersectionEqElimination, 
dependentIntersection_memberEquality, 
dependentIntersectionElimination, 
Error :depIsectIsType, 
lambdaEquality, 
sqequalRule, 
dependent_functionElimination, 
cumulativity
Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}C:a:A  {}\mrightarrow{}  B[a]  {}\mrightarrow{}  Type.    a:A  \mcap{}  b:B[a]  \mcap{}  C[a;b]  \mequiv{}  z:a:A  \mcap{}  B[a]  \mcap{}  C[z;z]
Date html generated:
2019_06_20-PM-00_35_03
Last ObjectModification:
2018_10_08-PM-05_28_39
Theory : dependent!intersection
Home
Index