Nuprl Lemma : dep-isect-wf
∀A:Type. ∀B:A ⟶ Type.  (x:A ⋂ B[x] ∈ Type)
Proof
Definitions occuring in Statement : 
dep-isect: x:A ⋂ B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
Rules used in proof : 
universeEquality, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependentIntersectionEquality, 
applyEquality
Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.    (x:A  \mcap{}  B[x]  \mmember{}  Type)
Date html generated:
2019_06_20-PM-00_35_02
Last ObjectModification:
2019_01_09-PM-02_48_08
Theory : dependent!intersection
Home
Index