Nuprl Lemma : member-dep-isect

A:Type. ∀B:A ⟶ Type. ∀x:a:A ⋂ B[a].  (x ∈ B[x])


Proof




Definitions occuring in Statement :  dep-isect: x:A ⋂ B[x] so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  dep-isect_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut dependentIntersectionElimination sqequalHypSubstitution equalityTransitivity hypothesis equalitySymmetry lemma_by_obid dependent_functionElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality functionEquality universeEquality

Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}x:a:A  \mcap{}  B[a].    (x  \mmember{}  B[x])



Date html generated: 2018_07_25-PM-01_30_18
Last ObjectModification: 2018_06_09-PM-09_18_13

Theory : dependent!intersection


Home Index