Nuprl Lemma : equipollent-empty-domain

[S:Type]. ((¬S)  (∀[A:S ⟶ Type]. u:S ⟶ (A u) ~ ℕ1))


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} uall: [x:A]. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B top: Top false: False not: ¬A exists: x:A. B[x] singleton-type: singleton-type(A) prop: member: t ∈ T implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  equal_wf all_wf not_wf singleton-type-one int_seg_wf equipollent-singletons
Rules used in proof :  lambdaEquality voidEquality isect_memberEquality voidElimination functionExtensionality dependent_pairFormation sqequalRule universeEquality cumulativity independent_functionElimination hypothesis natural_numberEquality applyEquality hypothesisEquality functionEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[S:Type].  ((\mneg{}S)  {}\mRightarrow{}  (\mforall{}[A:S  {}\mrightarrow{}  Type].  u:S  {}\mrightarrow{}  (A  u)  \msim{}  \mBbbN{}1))



Date html generated: 2018_07_29-AM-09_23_21
Last ObjectModification: 2018_07_27-PM-05_25_54

Theory : equipollence!!cardinality!


Home Index