Nuprl Lemma : equipollent-general-subtract-one

a:ℕ. ∀[T:Type]. (T ~ ℕ (∀i:T. {x:T| ¬(x i ∈ T)}  ~ ℕ1))


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equipollent-subtract2 false_wf le_wf equal_wf equipollent-one equipollent_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation hypothesis isectElimination because_Cache independent_functionElimination lambdaEquality setElimination rename universeEquality

Latex:
\mforall{}a:\mBbbN{}.  \mforall{}[T:Type].  (T  \msim{}  \mBbbN{}a  {}\mRightarrow{}  (\mforall{}i:T.  \{x:T|  \mneg{}(x  =  i)\}    \msim{}  \mBbbN{}a  -  1))



Date html generated: 2016_05_14-PM-04_03_41
Last ObjectModification: 2015_12_26-PM-07_42_18

Theory : equipollence!!cardinality!


Home Index