Nuprl Lemma : equipollent-product-product

[A:Type]. ∀[B:A ⟶ Type]. ∀[C:a:A ⟶ B[a] ⟶ Type].  x:A ⟶ y:B[x] ⟶ C[x;y] p:(a:A × B[a]) ⟶ C[fst(p);snd(p)]


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] pi1: fst(t) pi2: snd(t) function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T pi1: fst(t) pi2: snd(t) so_apply: x[s] so_apply: x[s1;s2] biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] implies:  Q surject: Surj(A;B;f) prop: subtype_rel: A ⊆B
Lemmas referenced :  istype-universe biject_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  productElimination thin sqequalRule applyEquality hypothesisEquality Error :productIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesis Error :universeIsType,  Error :functionIsType,  independent_pairFormation Error :lambdaFormation_alt,  Error :equalityIsType1,  because_Cache Error :inhabitedIsType,  functionEquality productEquality universeEquality Error :functionExtensionality_alt,  applyLambdaEquality Error :dependent_pairEquality_alt

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[C:a:A  {}\mrightarrow{}  B[a]  {}\mrightarrow{}  Type].
    x:A  {}\mrightarrow{}  y:B[x]  {}\mrightarrow{}  C[x;y]  \msim{}  p:(a:A  \mtimes{}  B[a])  {}\mrightarrow{}  C[fst(p);snd(p)]



Date html generated: 2019_06_20-PM-02_17_47
Last ObjectModification: 2018_10_06-AM-11_24_05

Theory : equipollence!!cardinality!


Home Index