Nuprl Lemma : equipollent-product-product
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[C:a:A ⟶ B[a] ⟶ Type].  x:A ⟶ y:B[x] ⟶ C[x;y] ~ p:(a:A × B[a]) ⟶ C[fst(p);snd(p)]
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
surject: Surj(A;B;f)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
istype-universe, 
biject_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
productElimination, 
thin, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
Error :productIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
Error :universeIsType, 
Error :functionIsType, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
Error :equalityIsType1, 
because_Cache, 
Error :inhabitedIsType, 
functionEquality, 
productEquality, 
universeEquality, 
Error :functionExtensionality_alt, 
applyLambdaEquality, 
Error :dependent_pairEquality_alt
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[C:a:A  {}\mrightarrow{}  B[a]  {}\mrightarrow{}  Type].
    x:A  {}\mrightarrow{}  y:B[x]  {}\mrightarrow{}  C[x;y]  \msim{}  p:(a:A  \mtimes{}  B[a])  {}\mrightarrow{}  C[fst(p);snd(p)]
Date html generated:
2019_06_20-PM-02_17_47
Last ObjectModification:
2018_10_06-AM-11_24_05
Theory : equipollence!!cardinality!
Home
Index