Nuprl Lemma : finite_wf
∀[T:Type]. (finite(T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
finite: finite(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
finite: finite(T)
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
nat_wf, 
equipollent_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (finite(T)  \mmember{}  \mBbbP{})
Date html generated:
2016_10_21-AM-11_00_06
Last ObjectModification:
2016_08_06-PM-02_33_57
Theory : equipollence!!cardinality!
Home
Index