Nuprl Lemma : finite_wf

[T:Type]. (finite(T) ∈ ℙ)


Proof




Definitions occuring in Statement :  finite: finite(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T finite: finite(T) so_lambda: λ2x.t[x] nat: prop: so_apply: x[s]
Lemmas referenced :  exists_wf nat_wf equipollent_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality cumulativity hypothesisEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (finite(T)  \mmember{}  \mBbbP{})



Date html generated: 2016_10_21-AM-11_00_06
Last ObjectModification: 2016_08_06-PM-02_33_57

Theory : equipollence!!cardinality!


Home Index