Nuprl Lemma : powerset_wf

[T:Type]. (powerset(T) ∈ Type)


Proof




Definitions occuring in Statement :  powerset: powerset(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T powerset: powerset(T)
Lemmas referenced :  int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule functionEquality hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (powerset(T)  \mmember{}  Type)



Date html generated: 2016_05_14-PM-04_02_18
Last ObjectModification: 2015_12_26-PM-07_42_54

Theory : equipollence!!cardinality!


Home Index