Nuprl Lemma : singleton-type_wf

[A:Type]. (singleton-type(A) ∈ Type)


Proof




Definitions occuring in Statement :  singleton-type: singleton-type(A) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T singleton-type: singleton-type(A) so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] prop:
Lemmas referenced :  exists_wf all_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A:Type].  (singleton-type(A)  \mmember{}  Type)



Date html generated: 2016_05_14-PM-04_02_03
Last ObjectModification: 2015_12_26-PM-07_43_15

Theory : equipollence!!cardinality!


Home Index