Nuprl Lemma : singleton-type_wf
∀[A:Type]. (singleton-type(A) ∈ Type)
Proof
Definitions occuring in Statement : 
singleton-type: singleton-type(A)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
singleton-type: singleton-type(A)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
exists_wf, 
all_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A:Type].  (singleton-type(A)  \mmember{}  Type)
Date html generated:
2016_05_14-PM-04_02_03
Last ObjectModification:
2015_12_26-PM-07_43_15
Theory : equipollence!!cardinality!
Home
Index