Nuprl Lemma : R-closed_wf

[T:Type]. ∀[X:T ⟶ ℙ]. ∀[R:T ⟶ T ⟶ ℙ].  (R-closed(T;x.X[x];a,b.R[a;b]) ∈ ℙ)


Proof




Definitions occuring in Statement :  R-closed: R-closed(T;x.X[x];a,b.R[a; b]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T R-closed: R-closed(T;x.X[x];a,b.R[a; b]) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s1;s2] so_apply: x[s]
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[X:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (R-closed(T;x.X[x];a,b.R[a;b])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-04_08_51
Last ObjectModification: 2015_12_26-PM-07_54_54

Theory : fan-theorem


Home Index