Nuprl Definition : almost_full
almost_full(T;n;R) ==  ∀f:ℕ ⟶ T. ∃s:ℕn ⟶ ℕ. (strictly-increasing-seq(n;s) ∧ (R (f o s)))
Definitions occuring in Statement : 
compose: f o g
, 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions occuring in definition : 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
int_seg: {i..j-}
, 
natural_number: $n
, 
nat: ℕ
, 
and: P ∧ Q
, 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
apply: f a
, 
compose: f o g
FDL editor aliases : 
almost_full
Latex:
almost\_full(T;n;R)  ==    \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  \mexists{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.  (strictly-increasing-seq(n;s)  \mwedge{}  (R  (f  o  s)))
Date html generated:
2016_05_14-PM-04_08_09
Last ObjectModification:
2015_09_22-PM-06_02_10
Theory : fan-theorem
Home
Index