Nuprl Definition : almost_full

almost_full(T;n;R) ==  ∀f:ℕ ⟶ T. ∃s:ℕn ⟶ ℕ(strictly-increasing-seq(n;s) ∧ (R (f s)))



Definitions occuring in Statement :  compose: g strictly-increasing-seq: strictly-increasing-seq(n;s) int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions occuring in definition :  all: x:A. B[x] exists: x:A. B[x] function: x:A ⟶ B[x] int_seg: {i..j-} natural_number: $n nat: and: P ∧ Q strictly-increasing-seq: strictly-increasing-seq(n;s) apply: a compose: g
FDL editor aliases :  almost_full

Latex:
almost\_full(T;n;R)  ==    \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  \mexists{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.  (strictly-increasing-seq(n;s)  \mwedge{}  (R  (f  o  s)))



Date html generated: 2016_05_14-PM-04_08_09
Last ObjectModification: 2015_09_22-PM-06_02_10

Theory : fan-theorem


Home Index