Nuprl Definition : alttree

Tree(A) ==  ∀n:ℕ. ∀s:ℕn ⟶ T.  ((↑(A s))  (∀i:ℕn. (↑(A s))))



Definitions occuring in Statement :  int_seg: {i..j-} nat: assert: b all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions occuring in definition :  apply: a assert: b natural_number: $n int_seg: {i..j-} all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] nat:
FDL editor aliases :  alttree

Latex:
Tree(A)  ==    \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.    ((\muparrow{}(A  n  s))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}n.  (\muparrow{}(A  i  s))))



Date html generated: 2019_06_20-PM-02_46_07
Last ObjectModification: 2019_06_06-PM-01_27_03

Theory : fan-theorem


Home Index