Nuprl Definition : altunbounded

Unbounded(A) ==  ∀n:ℕ. ∃s:ℕn ⟶ T. (↑(A s))



Definitions occuring in Statement :  int_seg: {i..j-} nat: assert: b all: x:A. B[x] exists: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions occuring in definition :  apply: a assert: b natural_number: $n int_seg: {i..j-} function: x:A ⟶ B[x] exists: x:A. B[x] nat: all: x:A. B[x]
FDL editor aliases :  altunbounded

Latex:
Unbounded(A)  ==    \mforall{}n:\mBbbN{}.  \mexists{}s:\mBbbN{}n  {}\mrightarrow{}  T.  (\muparrow{}(A  n  s))



Date html generated: 2019_06_20-PM-02_46_04
Last ObjectModification: 2019_06_06-PM-01_24_25

Theory : fan-theorem


Home Index