Nuprl Definition : bar-separation

BarSep(T;S) ==
  ∀A:(T List) ⟶ ℙ. ∀B:(S List) ⟶ ℙ.  (Decidable(A)  Decidable(B)  jbar(T;S;A;B)  (tbar(T;A) ∨ tbar(S;B)))



Definitions occuring in Statement :  jbar: jbar(T;S;X;Y) tbar: tbar(T;X) dec-predicate: Decidable(X) list: List prop: all: x:A. B[x] implies:  Q or: P ∨ Q function: x:A ⟶ B[x]
Definitions occuring in definition :  all: x:A. B[x] function: x:A ⟶ B[x] prop: dec-predicate: Decidable(X) list: List implies:  Q jbar: jbar(T;S;X;Y) or: P ∨ Q tbar: tbar(T;X)
FDL editor aliases :  bar-separation

Latex:
BarSep(T;S)  ==
    \mforall{}A:(T  List)  {}\mrightarrow{}  \mBbbP{}.  \mforall{}B:(S  List)  {}\mrightarrow{}  \mBbbP{}.
        (Decidable(A)  {}\mRightarrow{}  Decidable(B)  {}\mRightarrow{}  jbar(T;S;A;B)  {}\mRightarrow{}  (tbar(T;A)  \mvee{}  tbar(S;B)))



Date html generated: 2016_05_14-PM-04_09_23
Last ObjectModification: 2015_09_22-PM-06_02_17

Theory : fan-theorem


Home Index