Nuprl Lemma : dec-predicate_wf

[T:Type]. ∀[X:T ⟶ ℙ].  (Decidable(X) ∈ ℙ)


Proof




Definitions occuring in Statement :  dec-predicate: Decidable(X) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dec-predicate: Decidable(X) so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  all_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[X:T  {}\mrightarrow{}  \mBbbP{}].    (Decidable(X)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-04_08_48
Last ObjectModification: 2015_12_26-PM-07_54_53

Theory : fan-theorem


Home Index