Nuprl Lemma : decidable-predicate-not
∀[T:Type]. ∀[A:T ⟶ ℙ].
  ((Decidable(A) 
⇒ Decidable(¬(A))) ∧ ((Decidable(¬(A)) ∧ (∀t:T. ((¬¬(A t)) 
⇒ (A t)))) 
⇒ Decidable(A)))
Proof
Definitions occuring in Statement : 
predicate-not: ¬(A)
, 
dec-predicate: Decidable(X)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
dec-predicate: Decidable(X)
, 
predicate-not: ¬(A)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
Lemmas referenced : 
decidable__not, 
all_wf, 
decidable_wf, 
not_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
dependent_functionElimination, 
lambdaEquality, 
independent_pairFormation, 
productElimination, 
unionElimination, 
inrFormation, 
inlFormation, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  \mBbbP{}].
    ((Decidable(A)  {}\mRightarrow{}  Decidable(\mneg{}(A)))
    \mwedge{}  ((Decidable(\mneg{}(A))  \mwedge{}  (\mforall{}t:T.  ((\mneg{}\mneg{}(A  t))  {}\mRightarrow{}  (A  t))))  {}\mRightarrow{}  Decidable(A)))
Date html generated:
2016_05_14-PM-04_08_56
Last ObjectModification:
2015_12_26-PM-07_54_55
Theory : fan-theorem
Home
Index