Nuprl Lemma : decidable-predicate-not

[T:Type]. ∀[A:T ⟶ ℙ].
  ((Decidable(A)  Decidable(¬(A))) ∧ ((Decidable(¬(A)) ∧ (∀t:T. ((¬¬(A t))  (A t))))  Decidable(A)))


Proof




Definitions occuring in Statement :  predicate-not: ¬(A) dec-predicate: Decidable(X) uall: [x:A]. B[x] prop: all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  dec-predicate: Decidable(X) predicate-not: ¬(A) uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q guard: {T}
Lemmas referenced :  decidable__not all_wf decidable_wf not_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality independent_functionElimination hypothesis dependent_functionElimination lambdaEquality independent_pairFormation productElimination unionElimination inrFormation inlFormation functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  \mBbbP{}].
    ((Decidable(A)  {}\mRightarrow{}  Decidable(\mneg{}(A)))
    \mwedge{}  ((Decidable(\mneg{}(A))  \mwedge{}  (\mforall{}t:T.  ((\mneg{}\mneg{}(A  t))  {}\mRightarrow{}  (A  t))))  {}\mRightarrow{}  Decidable(A)))



Date html generated: 2016_05_14-PM-04_08_56
Last ObjectModification: 2015_12_26-PM-07_54_55

Theory : fan-theorem


Home Index