Nuprl Lemma : decidable-predicate-or

[T,S:Type]. ∀[A:T ⟶ ℙ]. ∀[B:S ⟶ ℙ].
  ((∃t:T. (A t)))  (∃s:S. (B s)))  (∀p:T × S. Dec(predicate-or(A;B) p) ⇐⇒ (∀x:T. Dec(A x)) ∧ (∀y:S. Dec(B y))))


Proof




Definitions occuring in Statement :  predicate-or: predicate-or(A;B) decidable: Dec(P) uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q all: x:A. B[x] exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q predicate-or: predicate-or(A;B) decidable: Dec(P) or: P ∨ Q not: ¬A false: False guard: {T}
Lemmas referenced :  all_wf decidable_wf predicate-or_wf and_wf exists_wf not_wf decidable__or
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin hypothesisEquality cut lemma_by_obid isectElimination productEquality sqequalRule lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality dependent_functionElimination independent_pairEquality unionElimination inlFormation independent_functionElimination voidElimination inrFormation introduction because_Cache

Latex:
\mforall{}[T,S:Type].  \mforall{}[A:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[B:S  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}t:T.  (\mneg{}(A  t)))
    {}\mRightarrow{}  (\mexists{}s:S.  (\mneg{}(B  s)))
    {}\mRightarrow{}  (\mforall{}p:T  \mtimes{}  S.  Dec(predicate-or(A;B)  p)  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x:T.  Dec(A  x))  \mwedge{}  (\mforall{}y:S.  Dec(B  y))))



Date html generated: 2016_05_14-PM-04_09_08
Last ObjectModification: 2015_12_26-PM-07_54_47

Theory : fan-theorem


Home Index